1.2 About the ERC Program

The ERC Program began in 1985 when the Nation was facing a strong emergence of highly competitive foreign firms fueled by government investment. There was a clear need to form partnerships that would strengthen the contribution of academic engineering to industrial competitiveness. The goal then was to address these challenges by developing 25 Engineering Research Centers, each of which (a) focused on a long-term vision important for industrial competitiveness, (b) integrated the traditional disciplines to address systems-level engineering research, and (c) formed university/industry partnerships in research and education.

A companion goal was to use the ERC concept as a catalyst to stimulate a broad-based change in the culture of academic engineering by integrating academic and industrial views, promoting the integration of research and education, involving undergraduates in research, and broadening the diversity of engineering graduates. The mechanism of centers was chosen as the means to accomplish those goals because centers can bring disciplines together. ERCs provide an integrated environment for academe and industry to focus on next-generation advances in complex engineered systems important for the Nation's future. Activity within ERCs lies at the interface between the discovery-driven culture of science and the innovation-driven culture of engineering, creating a synergy between science, engineering, and industrial practice. ERCs provide the intellectual foundation for industry to collaborate with faculty and students on resolving generic, long-range challenges to produce the knowledge base needed for steady advances in technology and their speedy transition to the marketplace.

ERCs also integrate engineering education and research and expose students to industrial views in order to build competence in engineering practice and to produce engineering graduates with the depth and breadth of education needed for success in technological innovation and leadership throughout their careers. The interface between research and education in an ERC is seamless at both the undergraduate and graduate levels, producing curriculum innovations derived from the systems focus of the ERC's strategic goals. ERCs can be a platform from which spring interdisciplinary, systems-oriented graduate degrees and options preparing students for careers in both industry and academe. Thus, graduates associated with ERCs enjoy the capacity to contribute to the Nation's global future through a rich spectrum of career paths at the cutting edge of technical progress and innovation. ERCs also emphasize outreach in research and education that allows faculty, college-level undergraduate and graduate students, and pre-college students and their teachers to be involved in the ERC.

ERCs are established by NSF as a result of peer-reviewed competitions generated by program announcements. They are supported by funds from NSF, industrial partners, the host academic institutions, and in some cases the home states and other governmental funding agencies. While NSF provides significant funds for each center, an ERC must identify and obtain substantial support from the other sources. This novel approach to funding a major research program is illustrated in Figure 1-1.

Figure 1-1: Primary Supporters of an ERC

<table>
<thead>
<tr>
<th>NSF</th>
<th>INDUSTRY</th>
<th>UNIVERSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalyst/Integrator</td>
<td>Active Participant</td>
<td>Long-Term Commitment</td>
</tr>
<tr>
<td>• Base Funding</td>
<td>• Advisor on Research,</td>
<td>• Research Facilities and</td>
</tr>
<tr>
<td></td>
<td>Education, and Testbeds</td>
<td>Resources</td>
</tr>
<tr>
<td></td>
<td>• Funding Support</td>
<td>• Culture Change</td>
</tr>
<tr>
<td></td>
<td>• Collaborative Research</td>
<td>• Recognition for Tenure</td>
</tr>
<tr>
<td></td>
<td>Projects</td>
<td>and Promotion</td>
</tr>
<tr>
<td></td>
<td>• Catalyst for Partnerships</td>
<td>• Nurturing of Students</td>
</tr>
</tbody>
</table>

NSF's support across all ERCs ranges from $1.0 M to $3.6 M per year; the average ERC award is currently $2.5 M per year (FY 02). The average annual total operating cost of an ERC currently is $9.3 M, and the range is from $3.6 M to $23.1 M. Roughly 30 percent of an ERC's annual budget comes from NSF and another 30% from industry; the remainder comes from
other Federal agencies (20%), the host university (10%), and state and local and other sources (10%).

Currently (FY 02), NSF supports 19 ERCs pursuing specific research foci in four broad areas, as listed below. (As of January 2002, 13 ERCs are self-sustaining after the conclusion of NSF support.)

BIOENGINEERING

ERC for the Engineering of Living Tissues (est. 1998)
Georgia Institute of Technology (lead institution) in partnership with Emory University

Marine Bioproducts Engineering Center (est. 1998)
University of Hawai'i at Manoa (lead institution) in partnership with the University of California at Berkeley

Center for Computer-Integrated Surgical Systems and Technology (est. 1998)
Johns Hopkins University (lead institution) in partnership with the Brigham and Women's Hospital, Carnegie Mellon University, the Johns Hopkins University Hospital, MIT, and Shady Side Hospital

Biotechnology Process Engineering Center (est. 1985)
Massachusetts Institute of Technology

VaNTH ERC for Bioengineering Educational Technologies (est. 1999)
Vanderbilt University (lead institution) in partnership with Northwestern University, the Harvard University-MIT Division of Health Sciences and Technology, and the University of Texas at Austin

Engineered Biomaterials Engineering Research Center (est. 1996)
University of Washington

MANUFACTURING & PROCESSING

ERC for Environmentally Benign Semiconductor Manufacturing (est. 1996)
University of Arizona (lead institution) in partnership with Arizona State University, the University of California at Berkeley, Cornell University, MIT, and Stanford University

Center for Advanced Engineering of Fibers and Films (est. 1998)
Clemson University (lead institution) in partnership with MIT

ERC for Particle Science and Technology (est. 1994)
University of Florida

ERC for Reconfigurable Machining Systems (est. 1996)
University of Michigan

EARTHQUAKE ENGINEERING

Pacific Earthquake Engineering Research Center (est. 1997)
University of California at Berkeley (lead institution) in partnership with California Institute of Technology, Stanford University, University of California at Davis, University of California at Irvine, University of California at Los Angeles, University of California at San Diego, the University of Southern California, the University of Washington, and nine affiliate institutions

Mid-America Earthquake Center (est. 1997)
University of Illinois at Urbana-Champaign (lead institution) in partnership with Georgia Institute of Technology, the University of Memphis, MIT, St. Louis University, Texas A&M University, and Washington University
1.2 About the ERC Program
Published on ERC Association (http://erc-assoc.org)

Multidisciplinary Center for Earthquake Engineering Research (est. 1997)
Headquartered at the University at Buffalo, in partnership with Cornell University, University of Delaware, University of Nevada at Reno, and University of Southern California, as well as other collaborating institutions and private entities throughout the U.S.

MICRO/OPTOELECTRONICS AND INFORMATION SYSTEMS

Center for Neuromorphic Systems Engineering (est. 1994)
California Institute of Technology

Packaging Research Center (est. 1994)
Georgia Institute of Technology

Center for Wireless Integrated Microsystems (est. 2000)
University of Michigan, Ann Arbor (lead institution) in partnership with Michigan State University and Michigan Technological University

Center for Subsurface Sensing and Imaging Systems (est. 2000)
Northeastern University (lead institution) in partnership with Boston University, Rensselaer Polytechnic Institute, University of Puerto Rico at Mayaguez, Lawrence Livermore National Laboratory, Massachusetts General Hospital, Brigham and Women's Hospital, and Woods Hole Oceanographic Institution

Integrated Media Systems Center (est. 1996)
University of Southern California

Center for Power Electronic Systems (est. 1998)
Virginia Polytechnic Institute & State University (lead institution) in partnership with North Carolina A&T State University, University of Puerto Rico at Mayaguez, Rensselaer Polytechnic Institute, and University of Wisconsin at Madison

Competition for new ERCs is now held periodically, usually every two years. ERCs receive NSF funding for up to 10 years, dependent upon renewal reviews conducted in the third and sixth years. At the end of their life-cycle as NSF-supported Engineering Research Centers, NSF expects ERCs to become self-sustaining with support from their members, universities, state governments, and other federal government agencies. Teams may emerge from parts of self-sufficient ERCs and enter competition for support as new ERCs. These ERCs recompete on an equal footing with all other applicants.

It is evident that the range of technology areas covered by the ERCs is quite broad. These centers are having a significant impact on U.S. industry through the transfer of knowledge and technology as well as through their graduates. More than 500 U.S. companies were members of one or more ERCs in 2000-01. As of Fall 2001, a total of 354 patents had been awarded to ERCs, 1,453 software licenses had been issued to companies, and 74 companies had been formed as spinoffs of ERC research, employing 813 people. Also as of Fall 2001, the cumulative totals for degrees granted to ERC students were: 2,383 PhD, 2,450 MS, and 2,541 BS degrees. In recent years, roughly four percent of all engineering doctoral degrees granted annually in the United States are awarded to ERC students. Thus, the ERC interdisciplinary, industry-oriented systems approach to engineering is spreading rapidly throughout industry and academy. The ERCs are fulfilling NSF’s expectation that they serve as change agents for academic engineering programs and the engineering community at large.

The participants in the ERC Program who have authored this manual hope that it will serve as a further vehicle for disseminating the ERC approach to engineering research and education, which we believe is highly beneficial and healthy for both academy and industry, throughout the American engineering enterprise.

NOTES

1 Relevance of the manual to other research center programs (not only within NSF but also those of other federal or state agencies) was a secondary consideration. However, many of the principles presented herein are applicable to
any government-sponsored university research center, especially one with industry involvement—not only in the United States but also abroad.

2 An ERC jointly supported under a Memorandum of Understanding between NSF and the Semiconductor Research Corporation.

3 The Earthquake Engineering Research Centers (EERCs) were established under a special program in 1997 to further knowledge and technology for earthquake hazard mitigation.

Source URL: http://erc-assoc.org/best_practices/12-about-erc-program