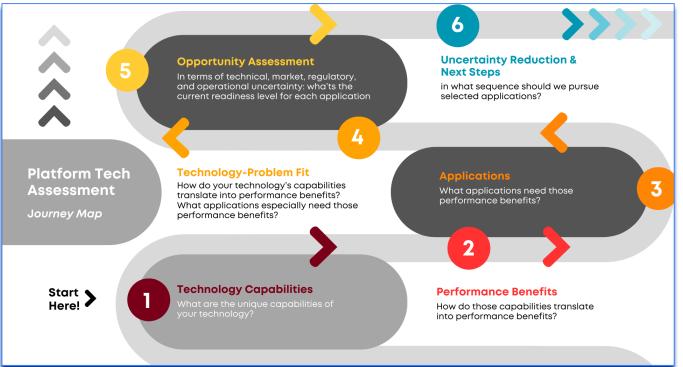


ERC ILO Meeting October 24, 2024

The problem:


Where to start; then what?

For innovators who have developed **early-stage technologies** with **multiple applications**, and need to determine an **initial market** and **developmental roadmap** to achieve their vision.

Use Cases

"Explorer" Researchers

- Many ideas don't know where to start
- Have problems articulating distinctive value of tech
- Vision for the "moonshot" but not intermediate applications
- Interested in NSF national I-Corps
 Teams TM but uncertain which customers to focus on
- Motivated for commercialization

Research Centers

- NSF ERCs, NSF IUCRCs, large research labs, etc.
- Center PIs concerned about commercialization metrics
 - Annual funding agency reporting
- Individual researchers more focused on problem-solving than invention disclosures
- Innovations could be more visible to tech transfer and industry partners

Program Experience

Five Modules

Foundational Concepts

Platform Technology Definition
Pasteur's Quadrant Framework
Technology Readiness Level Framework
Lily Pads Framework

Technology Capabilities

Technology Capabilities Framework & Activity

Technology-Problem Fit

Jobs to be Done Framework
Technology-Problem Fit Framework & Activities

Opportunity Assessment

Types of Uncertainty Framework
Opportunity Readiness Level Assessment Activity

Uncertainty Reduction & Next Steps

Application Roadmap (Lily Pads) Framework & Activity Uncertainty Reduction Strategies Framework & Activity

NSF I-CORPS HUB GREAT LAKES REGION

Strategic Planning Format

Cross-Functional Teams are Ideal

Principal investigator
Grad students and postdocs
Tech transfer/commercialization staff
Industry advisor, if feasible

Hands-on Sessions

Limited homework (watch videos)
Breakout groups (by innovation) immediately apply frameworks
Collaborate using Google Docs

Facilitated, Not Taught

Lots of discussion and sharing No formal presentations by participants

Flexible Format

Remote or in-person 1, 2, or 5 sessions (planning retreat or multi-session course)

Turnkey Canvas Site

Lecture videos: frameworks + ongoing X-ray example "Assignments" for in-session Google Doc collaborations Consolidated PowerPoints
Instructor Guide

Module 1: Foundational Concepts

Platform Tech, Use-Inspired Research, Tech Readiness Level, Lily Pads Introduce Case Example (Used for All In-Session Activities to Apply Frameworks)

Module 2: Technology Capabilities

Framework Introduction

Unique capabilities		Conditions where it performs well	Conditions where it performs poorly	Confidence level (1=low; 5=high)
Ultrarapid cooling (~1 million C/min)	Higher rates of vitrification Use of lower molarity cryoprotectants 3.Prevent ice crystal formation / tissue and cellular damage	Smaller biosystems, single cells	Large biosystem (> 1mm)	4
Scaling up in size of biosystem (use for large number of cells compared to other alternatives)		Moderate size systems (few 100 microns), possible parallel processing	scales with surface area and not volume, but physically challenging as size becomes large in 2D format (few inches in size is when it works well)	4
Scaling up in number of cells/etc. preserved simultaneously	obviate DNA damage? (beats droplet vitrification)		constraints on permeability to CPAs	5
Handle cells easily	provides an ability to transfer heat and chemicals from the cells	few cells	large pore size mesh	2

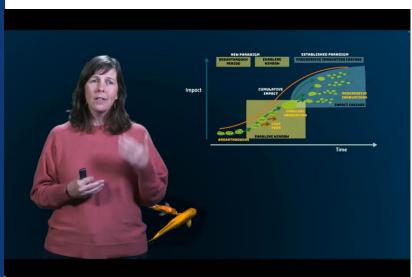
Module 3: Technology-Problem Fit

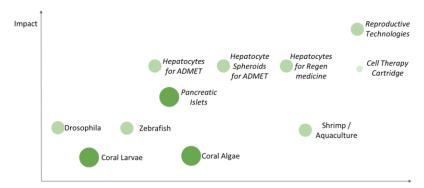
Framework Introduction

Module 4: Opportunity Readiness

Framework Introduction

Technical Uncertainty	1 - Low 2 - Moderate 3 - High	How soon do you expect your technology be developed to deliver differentiated performance benefits? Low = < 2 years High = > 5 years
Market Uncertainty	1 - Low 2 - Moderate 3 - High	Is there a set of customers who need a better solution and are ready and willing to adopt one? Low = clearly defined set of customers with articulated need High = ill defined market with little or no awareness of need
Regulatory Uncertainty	1 - Low 2 - Moderate 3 - High	Is there an existing or attainable pathway for any required regulatory approvals? Low = existing pathway with predictable outcome High = unknown or nonexistent pathway or unpredictable outcome
Operational Uncertainty	1 - Low 2 - Moderate 3 - High	Can your solution be manufactured/produced/delivered at sufficient scale and cost to satisfy customer demand? Low = Existing processes and technology can be used or adapted High = Complex new processes and technology must be developed


Application Opportunity	Technical Uncertainty	Market Uncertainty	Regulatory Uncertainty	Operational Uncertainty	Total Score	Unknowns to Research Further
Coral larvae	2	3	1	2	8	TU: Different species respond differently, MU: who will pay, is there a customer, OU: meaningful proof of concept of large scale-up does not exist. RU: Inadventently modifying genetics of population, but fewer issues if within a country
Hepatocytes for ADMET	1	2	1	3	7	TU: not much technical risk MU: getting customers to change over RU: not placed in body so lower regulatory risk OU: some operational concerns, but relatively low
Shrimp preservation	3	3	2	3	11	TU: different techs needed for different lifecycle stages and limited success to date MU: replacing standard shrimp and impact on existing market RU: uncertainty replacing natural food OU: many challenges



Module 5: Uncertainty Reduction/Next Steps

Framework Introductions

			Time
Application 1: Coral larvae - 8	3-6 Months	6-18 Months	18-36 Months
	- market analysis - philanthropy, people who are already maintaining cryobanks - conservation managers	-Talk to the relevant stakeholders with high interest in cryopreservation	
Technology - 2 Is it technically feasible?	Feasibility study for scale-up	- Feasbility, broader applicability -test new CPAs that are less harmful	- Collect user feedback, iterate design
Operational - 2 Can you produce it at scale?	- add storage system prototype (to demonstrate we can store 100s of meshes)	- Figure out the cold chain needed for operations	- Ready to package and go to the market
	- Ask the coral people to understand inter- country regulations	-consult with legal experts, regulatory bodies, USDA	⊃ ·Bi∩

"Most valuable insights"

How to conceptualize technology capabilities outside of the initial development.

Lily Pad Strategy That I am not the only person struggling with this and nature of my problem and the way I should approach to solve it.

The worksheets and examples for the teams.
Breakout rooms!

This is a great course. Thinking this way is so out of the norm for most researchers developing technology, the earlier these ideas and vocabulary can be introduced the better. I also think teams work the best. These projects don't exist in a vacuum and it's helpful to have other perspectives.

Upcoming Platform Tech Assessment Workshops from Great Lakes I-Corps Hub

Each workshop is two half-days 9-noon central/10-1 eastern

- Nov 12/19
- Offered each quarter
- Free (NSF funded)
- Online

https://www.greatlakesicorps.org/programs/platform-technology-assessment-workshop/

You can import the Canvas site to your institution's LMS and conduct the program yourself!

Commercialization Planning for Early-Win Technologies

Working Name

Proposed Startup Name or Licensable Technology Name (1-2 words)

Tagline

One sentence – illustrative of value proposition, compelling & understandable to nonspecialists

Value Proposition

One paragraph: What is the problem, how are you solving it, what makes your solution special (i.e. benefits not features). Beachhead and future markets.

Products/Services

One sentence description – what are customers buying. Then add high-level laundry lists.

Markets/Fields of Use

Short-medium-long term Technology readiness level Market readiness level

Market Size

TAM/SAM/Target/Beachhead Current, Five-Year, CAGR

IP Status

Disclosures
Provisional, pending, awarded patents
Know-how, trade secrets

Team

Researchers Business

Enabling Technology, Market & Regulatory Trends

Pick up from industry reports available an any R1 school's business library

Industry Landscape

Major players: Pick up from industry reports

Current/potential R&D partners: Pick up from industry reports

R&D Funding Requirements & Potential Nondilutive Sources (Beachhead Markets)

SBIR/STTR, gap funds, state economic development, philanthropy, corporate-sponsored research or partnerships

Product Roadmap

For each product: development and market milestones

Commercialization Plan Template

Working Name: Proposed Startup Name or Licensable Technology Name (1-2 words)

Tagline: One sentence - illustrative of value proposition, compelling & understandable to nonspecialists

Value Proposition:

One paragraph: What is the problem, how are you solving it, what makes your solution special (i.e. benefits not features). Beachhead and future markets.

Products/Services:

One sentence description - what are customers buying. Then add high-level laundry lists:

Physical product elements:	Services:
•	•

Markets/Fields of Use:

Timeframe	Market/Field of Use	Technology Readiness Level ¹	Market Readiness Level ^p
Short term	Market A • Specific uses cases or applications •	• TRL? • TRL?	• MRL? • MRL?
Medium Term	Market B (there may be more than just one in this time frame) • Specific uses cases or applications •	• TRL? • TRL?	• MRL? • MRL?
Long Term	Market C (there may be more than just one in this time frame) • Specific uses cases or applications •	• TRL? • TRL?	MRL? MRL?

Market Size:

	Current Year	Five (Ten?) Years	CAGR
TAM	\$? B	\$? B	7%
SAM	\$?B	\$? B	?%
Target	\$? B	\$? B	?%
Beachhead	≅\$?B	≅\$?B	≅?%

Intellectual Property Status:

- Provisionals filed
- Patents awarded
- Know-how/trade secrets

ATP-Bio Confidential - Page 1

Team:

Researchers:	Business:
 Faculty and Researchers: 	 If a startup, who will lead the business?
 PhD students/candidates and postdoc(s): 	 Who else will be involved

Enabling Technology, Market & Regulatory Trends

Pick up from industry reports available an any R1 school's business library

Industry Landscape:

Major players: Pick up from industry reports

Current/potential R&D partners: Pick up from industry reports

R&D Funding Requirements & Potential Nondilutive Sources (Beachhead Markets):

(Include SBIR/STTR, other federal commercialization possible funding, gap funds, state economic development,

philanthropy, corporate-sponsored research or partnerships

R&D Project	Required Funding (Estimate)	Potential Funding Sources	Potential Funding \$\$
 Commercializati 	• \$?	 Source A 	 \$? million
on Project A		Source B	 \$? million
883		Etc	 \$? million
 Commercializati 	• \$?	1	
on Project B		Source C	 \$? million
61997W1507055A657F		• Etc.	• \$? million
• Etc.	• \$?	Source D	• \$? million
200000		Etc.	 \$? million

Product Roadmap:

	Year 1	Year 2	Year 3
Beachhead Product A	Development/regulatory milestones/launch?	Development/regulatory milestones/launch?	Development/regulatory milestones/launch?
Beachhead Product B	Development/regulatory milestones/launch?	Development/regulatory milestones/launch?	Development/regulatory milestones/launch?
Etc.			

ATP-Bio Confidential - Page 2

Appendix

Beginning on a separate page, add notes and additional details regarding each of the above sections. The above commercialization plan summary should be no more than 2 pages.

¹ TRL: 1-Basic principles observed 2-Tech concept formulated 3-Experimental proof of concept 4-Tech validated in lab 5-Tech validated in relevant environment 5-Tech demonstrated in relevant environment 7-Prototype in operational environment 8-System complete and qualified 9-System proven in operational environment

² MRL: 0-Perceived Need 1-Notional Value Proposition 2-Notional Customer Characterization 3-Customer Discovery 4-Low-Fi MVP Design 5-Low-Fi MVP Campaign 6-Revalidate Solution and Model 7-High Fidelity MVP Campaign 8-Validate Model With MVP Results 9-Go To Market Decision