2017 ILO Summit Presentations July 26th - 28th , 2017 **North Carolina State University** Raleigh, NC

Sustainability Planning For Post Graduation

Presented by: Lisa Beard Industry Outreach Director And Liaison Officer

July 27, 2017

Northeastern

Rensselaer TUSKEGEE

Sustainability Overview CURENT Post-Graduation Planning

Purpose

•Transition strategy for CURENT to move from a NSF/DOE jointly funded ERC to a self-sufficient organization

•Secure additional support/funding for continuation beyond year 2020

•Four-year business plan/roadmap to outline necessary steps for implementation

•Engage stakeholders in planning process

What is needed to transition to self-sustained institute

•Leadership of the management team

•Broad engagement of faculty, staff, industry partners, and university administration, which allows for both ownership in the plan and commitment from all stakeholders

•High degree of University commitment

•High education program value to faculty, students and industry

•Commitment of core group of faculty

•Active industrial support, contribution of membership fees and guidance

•Effective implementation of a transition plan that builds on Center's strengths

Sustainability Planning Process

- Initiated discussions with potential partners and funding sources
 - Reviewed other successfully graduated center's sustainability plans
 - Conducted one-on-one meetings with principal and key members
 - Ask for input during IAB workshops and retreats
 - Held Internal discussions with Leadership across Universities to gain institutional support
 - Developed action plan to procure resources including State Funding, Endowments e.g. NYSERDA, UT Center of Excellence, Gov. Chair e.g. Gates Foundation
- Formed the CURENT Industry Sustainability Working Group (CISP)
- Met with NSF ILO Consultants at UTK in April 2017 to discuss Center Sustainability Planning and Tech Transfer
- Presented and discussed CISP progress with IAB/SAB during July 2017 summer retreat
- Establish cooperative efforts with multi-disciplinary partners at CURENT Universities
- Working with two, small, start-up companies for technology transfer (option to license)
- Launch Core projects during Years 9 and 10
- Seek support to continue beyond Year 10
- Develop Plan for Education and Outreach Continuation

CURENT Industry Sustainability Planning Group (CISP)

Team Purpose

- determine methods to retain and grow relationships with current members and explore other opportunities to help sustain the center.
- help center build a sustainable model by providing guidance for financial support and facilitation of its programs.

Mission and Objectives

- increase the likelihood of a successful transition so Center is able to sustain itself (both its mission and budget) and continue to operate after graduation.
- anticipated that several key changes can be expected for the Center. The goals of the plan is to positively manage those major changes and develop creative approaches to augment the core programs of the Center in other ways.

CURENT Sustainability team

CURENT Sustainability Team			
Name	Affiliation		
Industry			
Tom King (chair)	UT/ORNL		
Hongming Zhang	Peak Reliability		
Dejim Lowe	Tennessee Valley Authority		
Xiaoming Feng	ABB/IAB Co-chair		
Dave Bertagnolli	Scientific Advisory Board		
Matthew Gardner	Dominion/IAB Chair		
Phil Overholt	Department of Energy		
Faculty			
Ali Abur	NEU Campus Director		
Joe Chow	RPI Campus Director		
Fran Li	UTK Campus Director		
Greg Murphy	TU Campus Director		
Bill Dunne	College of Engineering,		
	Associate Dean & Professor		
Staff			
Lisa Beard	Industry Outreach Director		

Sustainability Plan Four Key Components

1. Programmatic

Define Post-Graduation Mission & Goals

2. Financial

- Secure University Support
 - Institutional Support (financial)- written commitments from 4 Deans
 - Interdisciplinary research grants obtained from Federal and State agencies
 - Innovation Partnerships education grants and start-up companies
- Continue to Increase Industry Engagement
 - 14 on-site visits to industry sites in 2016 and 8 in YTD in 2017
 - $_{\circ}$ 35 members 5/30/2017 goal is 40 or less
 - Consider modifying cost structure
- Capitalize on Technology transfer

3. Cultural

- Develop future workforce by educating students who are prepared to work as teams, to become entrepreneurs, and are cross-trained in power electronics and power systems;
- Build a cross-section with public-private partnerships and leverage both public and private funding;
- Seek technology innovation through research, development and application;

4. External

- Marketing/Action plan
- Conduct Outreach/Workshops

- CURENT's mission is to be a critical catalyst for the technical evolution of the power industry. Several key changes expected for the Center:
- Goal of the sustainability plan is to positively manage those major changes and develop creative approaches to augment the core programs of the Center in other ways. The plan will address the following areas: 1) financial, 2) programmatic, 3) cultural and 4) external.
- Metrics of success include the ability to maintain the core Center characteristics of system driven approaches and the core elements of industry engagement, research and education.

Key Challenge will be balancing scope and availability of resources

Activities Across Different Time Dimensions

Innovation (Long-Term, 10-20 yr)

- Identify and research top technology trends (ten to twenty year timeframe) with emphasis on enabling scalable, power-industry positive impacts
- Develop and publish a series of high-priority technology white papers for Members
- Develop attractive proposals and experiments in an effort to support long-term industry innovation and assure future investment
- Build a strategic technology portfolio (patents, licenses, etc.) to provide incremental independent funding while also providing value to Members

Research and Development (Mid-Term 3-5yr)

- Grow core competence in technology areas such as Ultra-Wide-Area Management, Monitoring and Measurement, Cyber Security, Large Scale Modeling, Analytics and Visualization
- Working closely with top tier Members Power
- Technology Transfer (Short Term 12-24 months)
 - Technology Testing/User Group(s)
 - Software tool development and prototype design
 - Annual Industry Conference
 - Communications

Post-Graduation Business Plan

Membership Structure

Our Sustainability Plan will focus on Principal and Full Memberships

- Increase principal/full membership participation
- May consider modifying membership fees
- May consider developing focused membership groups/projects

Sustainability Plan

Innovative Stakeholder Partnership – States, Federal opportunities

Cherokee Farms Innovation Campus, adjacent to UT campus, is being considered as a location for a multi-institutional collaborative that could leverage CURENT research activities

- Continue to pursue State and Federal funding opportunities
 - NYSERDA
 - Massachusetts
 - o Alabama
 - \circ Tennessee
- Innovative Stakeholder Partnership: e.g. Cherokee Farm Innovation Campus is a collaborative effort of The University of Tennessee and Oak Ridge National Laboratory.
- Aggressively pursue opportunities with DOD, DHS, DOE

Capitalize on Technology Transfer & Intellectual Properties

Commercialization paths

Continue strong partnerships and collaboration with industry
Increased financial assistance from each of the partner Universities and industry,

•Transfer of technologies to industry, business and marketing plans being implemented utilizing research expertise of the center's faculty, testbeds and research facilities.

Technology commercialization roadmap

Commercialization paths

FEATURES	EXAMPLES	COMMERCIALIZATION PATHWAYS	TECHNOLOGY APPROACH
Component & Devices	 Next Generation Monitoring Actuation Systems Power Electronics 	 Generate Intellectual Property & Collaborate with Innovation Partners Member Co. License Small Business License Start-up Company 	 Device development Modeling system impacts Hardware test-bed demo Field trial Full deployment
Software	 Control Algorithms MOVARTI –Volt/Var Situational Awareness 		 Algorithm development Modeling system impacts Incorporate into commercial product or open-source Field trial and full deployment
User Facility	Hardware Test-bed	ERC ConsultingStart-up company	 Define problem with client Develop scenarios for HTB Results communicated to client

I-CORP Program – Develop Business Model Canvas

Action Plan

- CURENT Industry Sustainability Plan Working Group/Plan
- Continue CURENT Research Outside of NSF/DOE ERC
- Extend CURENT Roadmap for Post Graduation
- Develop Business Plan (operating expenses/projected revenue)
- Work with three "technovators" for technology transfer
- Measures of Success
 - Secured financial assistance
 - o Interdisciplinary research grants obtained from Federal and State agencies
 - Adopted technology developed business and marketing plans
 - Re-defined scope of the research portfolio
 - Fee structure established and being used for outside use of testbeds and research facilities transfer models
 - Continue Education Outreach Efforts

Discussion

Acknowledgements

This work was supported primarily by the ERC Program of the National Science Foundation and DOE under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program.

Other US government and industrial sponsors of CURENT research are also gratefully acknowledged.

NSF ENGINEERING RESEARCH CENTER FOR ADVANCED SELF-POWERED SYSTEMS OF INTEGRATED SENSORS AND TECHNOLOGIES

SSIST

Recruiting and Retaining New Members at NSF ERCs

R. Casey Boutwell, Ph.D., MBA Director of Industry Engagement 2017 NSF ILO Summit July 27, 2017 – Raleigh, NC

SSIST

Outline

- Needs/Value Analysis
- Benchmarking /Landscaping
- Contact
- Resonance

Figure 1 - Center Development Cycle

SSIST

ASSIST Industry Members in 2017

Industry Membership

Growth in health sector

- Pharmaceuticals
- Medical Devices

Advocates for ASSIST

MERCK

MEDLINE

- ► Systems
- Evaluation

8/21/

Engagement

Active Membership Recruitment

- Seeking companies to help support growth
- ASSIST's needs change as our technologies develop
- Flexible electronics, IoMT, and medication adherence
- Target members:

Needs/Value Analysis

► High level needs analysis of ERC

- Next level of growth for ERC (research or development-wise) (CEO)
- Site Visit Team key questions (CSO)
- Input of new stakeholders, rounding out technology offerings (CCO)
- Testbed development and broader deployment (COO)
- Skill/values analysis of faculty/leadership
 - Development capabilities and interests
 - Laboratory tools, throughput volume, student skills/development

Benchmarking/Landscaping

Characterization of the ERC value chain (where do research products go?)

- What innovation or materials lead the Center's use?
- Who is the next natural owner of the Center's research product outputs?
- Who else captures value in the supply chain as Center outputs progress towards the end user?
- Landscape analysis of main industry sector(s)
 - What firms are leading in your sectors? What firms have a growth mentality?
 - Big cash rich companies (sponsored research)
 - Mid-size companies with high press coverage and rapid growth (research and development)
 - Small companies with VC backing and experienced teams (co-development on specific projects)
- Identifying the right member firm

Contact

Identifying the right contact

- ILO needs bizdev/exec/director contact
- PI needs engineering contact

- Expanding the contacts (finding engineering and business leads who know each other)
 - ▶ ILO pitches to bizdev team
 - ILO hosts call with engineering lead and key PIs
 - Host Center visit for both technical and business contacts

Resonance

- Keeping the relationship growing, stakeholder weigh-in/buy-in
- Incorporation on larger projects/responsibilities ASAP (more in IAB Role)
- Building metrics for success:
 - ► In-person visits
 - Joint calls
 - Papers/presentations emailed

- IP disclosed in field
- Press coverage
- Students/faculty hired

- Connections to other members/customers
- Private presentations/visits by students/faculty
- Circle back frequently for check-up, happy with engagement, new needs/opportunities?

- Noven Pharmaceuticals: ILO identified lead, pitched business teams, built support top-down
- Profusa Inc: PIs identified lead, pitched co-development projects, awarded shared grants, built support bottom-up
- Bluedoor: Partnership/community identified, active in shared goals, supporting Center growth
- VitalFlo Inc: Commercialization identified, supporting specific individual growth/license

Group Dialogue

How many members do you each have?

How many members gained/left last year?

Do you see this trend continuing?

► Who is your greatest internal advocate?

► Who is your greatest external advocate?

NSF ENGINEERING RESEARCH CENTER FOR ADVANCED SELF-POWERED SYSTEMS OF INTEGRATED SENSORS AND TECHNOLOGIES

SSIST

The Role of the Industrial Advisory Board at NSF ERCs

R. Casey Boutwell, Ph.D., MBA Director of Industry Engagement 2017 NSF ILO Summit July 27, 2017 – Raleigh, NC

SSIST

Step 0: ASSIST's IAB in Bylaws

Motivation of the IAB (Philosophy)

Diversity, Advisement, Engagement

Objectives for the IAB (Strategy)

Capabilities, Contributions, Advocacy

Examples of Strategies (Execution)

Step 0: How is ASSIST's IAB structured?

- ► Full and Associate Members (3 vs 1 vote each)
- Advise
 - Commercialization strategy, core/non-core mix
- Review
 - Reports, budgets, proposals, IP
- Votes
 - Membership-pool-funded projects, IP decisions
- ASSIST has 17 IAB Members, 5 Full and 12 Associate 5

ASSIST Industry Members in 2017

IAB Philosophy

Diverse boards build a broad bench with deep expertise

- ▶ 5 large, 10 medium, 1 small company
- European, Asian, American headquarters
- Textiles, Electronics, Pharmaceuticals, Materials, Data Analytics
- General research vs specific projects

IAB Philosophy

Advisement

- Reviewing and providing context for project selection
- Answering strategic questions (Proj. X or Y? What after Proj. X? etc.)
- Clarifying ASSIST's place in the value chain for our field (who do we support, who supports us?)

Engagement

- Finding new engineering contacts to support key PIs and key projects
- Supporting projects inside firm (for bizdev attention, partnerships, or intern selection)
- Challenging PIs and students (for relevance of work, for further funding, etc.)

Strategies for the IAB

Identifying capabilities of individual board members or firms (and recruiting missing needs, previous talk)

- Translating capabilities to contributions
- Mechanisms for inclusion:
 - Sub-chairs based on ERC needs
 - Taskforces for high priority projects
 - Technical calls with high performing Pls
 - Engagement with non-team players
 - Strategy calls with key IAB members
 - Advocacy for membership drive events

Expanding IAB Leadership

- ▶ 3 sub-chairs: Data, Health, Self-sufficiency
 - ► Go-to connection for strategic questions
 - ► IAB Chair:
 - Anna Kravets
 - Director of Business Consulting
 - Merck & Co. Pharmaceuticals
 - Health Adviser:
 - Anita Watkins
 - Director Rex Strategic Innovations
 - UNC Rex Healthcare Healthcare Provider Network
 - Data Adviser:
 - Dr. Deva Kumar
 - Distinguished Systems Architect
 - SAS Institute Data Analytics and Intelligence
 - Self-sufficiency Adviser
 - Currently open

Examples: IAB Engagement at ASSIST

External Advocacy

- New membership: target members respect existing member opinions, existing members invite target members to events
- To the NSF: explain realistic commercialization and IP objectives, describe useable outputs of research projects

Internal Advocacy:

- Helps direct attention to areas ILOs feel of greatest need (great asset)
- Connect member engineering teams with holistic needs of Center, not just on their projects (benefits of systems center) MERCK
- General examples: commercialization, IP, partnerships, testbed development

 Image: Commercialization, IP, partnerships, testbed
- Specific examples: MDs, insurance companies, investigation in the state of the s

MERCK

EASTR

profus

Examples: IAB Engagement at ASSIST

Testbed level taskforces

- Provides domain expertise, market intelligence, and engineering engagement
- Grows multiple relations between members and Pls (stronger mesh)
- Increases membership value for members and engagement value for PIs
- Hosting showcase and membership drive:
 - Profusa hosted ASSIST in SF, invited 40 companies to PI pitch rounds and demo review (gained two new members)
 - Analog Devices hosting similar event in September in Boston

The role of the IAB at ASSIST

- ▶ The role of the IAB is to advise the Center Leadership.
- Advice and engagement is for research objectives supporting commercially relevant goals.

Group Dialogue

- How many members are in your IABs?
- ► How is your IAB structured?
- ► What would you like to get out of your current IAB?
- ▶ What is the best-performing IAB we could create?
- What external stakeholders can we tap to help create this structure?

- Advocates for the Center, to the NSF, faculty, students
- Advising director and d.dir
- Task forces on center needs (data, health, sustainability, testbeds)
- Ask targeting questions:
 - "how do we leverage results of proj. x to be more effective and attractive to particular sectors or companies"
 - "should we focus more on data infrastructure in our research or can we leave that to industry as a solved problem (to just plug and play in the future)?"

- Help find technical contacts for scientific advisory board, closely ties member to center.
- Providing material for incorporation in testbeds and research prototypes (benefits member and team)
- Supports ILO in membership searches externally for connecting to internships
- Supports ILO mission internally to advocate for industry focus and specific IP strategy,

Recruiting and Retaining July 2017

Peter L Keeling Iowa State University

ERC & YE CON		Stage 2. ERC Years 1 thru 3 Define and Develop	Stage 3. ERC Years 4 thru 6 Refine and Optimize	Stage 4. ERC Years 7 thru 10 Redefine and Mature	Stage 5. ERC Years 10+ Graduate to Sustainable Center
	Work closely with ERC Founders and University advisors to develop ideas within cortext of NSF ERC Guidelines. Help define ERC opportunity.			Redefine Center concept based around a vision of future sustainability.	Revew and define new sustainability strategy
Mem Recru	Secure letters of hiertfrom future industry members. Identify Rey indviduals to work with. ber uitment	Develop active outwach process through, business connections, technical summits, cutrach presentations, flers and brochures. Tiered membership abucture based on company size, verying benefits, What is a readistic VAS size.	Rafne recruitment efforts with a greater emphasis on maximizing ability to retain key members.	Radefine recruitment and relembon around a future sustainability strategy.	Develop connections to forge the best path Into Sustainability.
Mem Reter	ntion		Maximize ERC reampany interaction and benefits. Cultivate interest in joint projects, involvement in basitsets, and other ERC opportunities, Value and mechanisms of establishing multiple points of contact in firms.	Redefine recruitment and releation around a future sustainability strategy.	best path into Sustainability.
	Begin to define testbeds and cross project integration adoptide a stratagy for commercialization. m of 1P	input from project inception, using project management tools (timelines, goho-go points, cross project integration, etc.).	Meet Industry R&D needs alongslide ERC needs in tostbod, https://windustrial.input from project inception, using project management tools (ill mellines, goho-go painta, cross project integration, atc.). Stattegles for increasing sponsored research projects with inclusity.	Redefine commercialization strategy around a future sustainability strategy.	Redefine commercialization strategy in light. of sustainability path.
	Begin to define shategy for IP management and technology transfer.	strategy, Technology Transfer and the Invention Disclosure. Start to identify key technology transfer staff for ERC IP management (invention disclosures, patent processing, IP marketing, etc.), the licensing	Refine management and strategy, Technology Trensfer and the immnion Disclosure process. Realistic chances of "Vig-ht" from Tegenerated researce. Cultweet connections to key technology tensitier staff for ERC IP management (invention disclosures, patient processing, IP marketing, etc.), the loomsing process and whold is really valuate to the membership.	Redefre intellectuel propenty strategy around a future sustainability strategy	Rodoffen P stallogy in light of sustainability poth
Prop Inneo Strat	Begin to identify keylocal innovation partner and infrastructure	local, state, and regional economic	Cultivate entrepreseurship activities in the ERC and University, connecting to local, atate, and regional economic development and incentive programs and role of investment groups auch as Angels, VCa.	Redeline innovation strategy around a future sustainability strategy.	Radafina innovation situlagy in light of - sustainability path.
CENTER FOR BIORENEWABLE	Begin to identify strategy is develop valuable education programs action r ams	Start student mentoring programs, short courses and workshops for industry. Cartificate programs and distance learning models, Faculty and student exchange. Active prevaision of industrial recruitment of graduates.	Refine student mentoring programs, short courses and worklaps for industry. Certificate programs and distance learning models, Faculty and student exchange, Active promotion of industrial menutment of graduates.	Redefine education skalegy around a future sustainability strategy.	Redefine education skrategy in light of sustainability path.

LUX: Amid low oil prices, investors have shifted focus in 2016 to commercializing biobased products that offer improved performance, not just "greener" replacements for petro-based compounds.

Market Realist.®

Global shale gas basins, top reserve holders

CENTER FOR BIORENEWABLE CHEMICALS

One Year Away from Zero Members

- Members stayed between 1 year and 8 years
- Recruit, Reward, Retain.
- Stagger start/renewal date when sign agreement.
- Tiered membership offers valuable flexibility.

	Strategic No IP Options	Full Includes options to negotiate IP Rights	Sponsoring * To be negotiated on a case-by-case basis
Large	\$25,000	\$50,000	*
Medium	\$12,500	\$25,000	*
Small	\$2,500	\$5,000	*
Startup	\$500	\$1,000	*

Attract & Retain

ERC's need an active IAB with sufficient diversity to add value to the center.

Find - Core Needs

Understand why companies are members. They are not all the same.

- Clear Understanding of Industry Membership Benefits & Costs, and your Membership Agreements
- Solid Knowledge of your ERC's Science & Technology
- Classy Brochure with your ERC Story
- Convincing PowerPoint Presentation with Great Slides

How to create products and services customers want. Get started with...

- Consistent Credibility with your ERC Management Team and University Admin
- Build Links to the Broad Industry of your ERC
- Dialogue & Good Relations with your Industry Member Folk
- Patience, Perseverance,
 Persuasion, Passion &
 Vision

Track - Membership Database

Build a database of company names, connections, contact info and notes.

- Spreadsheet is a good start.
- Need to track member changes and evolving contact lists.
- Next level is a database.
 Best if database and invoices are integrated.
- ILO's that exit leave a challenge behind.

Recruit key decision makers. Industry folk move jobs. Track with LinkedIn.

- Emails, connections, business meetings lectures, brochures.
- Imperative to reach the "right person" as senior as you can get. Build many connections.
- Follow-up with conference call and campus visit.
- Invite select guests to Annual Meeting (Fee & CDA).

- Cold calls do not work.
- CDA is sometimes a problem.
- Use your IAB and Faculty.
- Business Summits

CENTER FOR BIORENEWABLE CHEMICALS

- Explain, describe and summarize.
- Often get new people ۲ to member meetings.
- Legal side and patents and internet access and strategy and SWOT.
- Build a good rapport with your IAB.

Respond effectively to emails, phone calls, meetings, discussions, comments.

- Annual meetings are very important.
- Newsletters and webinars are very effective.
- Impossible to provide all information about an ERC to the membership.

Listen, Evolve, Professional

Retain

- Build multiple relationships with members.
- IAB Seed projects from membership fees.
- Sponsored research, internships, mentoring all build a deeper root in the ERC.
- Find creative ways to not lose members.

	Strategic No IP Options	Full Includes options to negotiate IP Rights	Sponsoring * To be negotiated on a case-by-case basis
Large	\$25,000	\$50,000	*
Medium	\$12,500	\$25,000	*
Small	\$2,500	\$5,000	*
Startup	\$500	\$1,000	*

How will you innovate for a better world?

CENTER FOR BIORENEWABLE CHEMICALS

Build Intermediates to make Branches

Computational Biocatalysis

Ecosystem Accelerator

CUSTOME

SEGMENTS

L. CUSTOMER

ELATIONSHIPS

CHANNE

PORDATION

& KEY ACTIVITIES

KEY

RESO

Business

Model Generation

RARTNERS

COST STRUCTURE

- Students gain real insight into project and startup concept planning.
- At least one startup from each Entrepreneurship Course.
- Startups need mentoring and require funding.
- CBiRC's startups have accessed over \$6m of funding since 2011.

ERC Stages

CENTER FOR

ERC STAGES & YEARS CONCEPT	Stage 1. ERC Years -2 thru 0 Formation and Foundation	Stage 2. ERC Years 1 thru 3 Define and Develop	Stage 3. ERC Years 4 thru 6 Refine and Optimize	Stage 4. ERC Years 7 thru 10 Redefine and Mature	Stage 5. ERC Years 10+ Graduate to Sustainable Center
Ideation and Formation	Work closely with ERC Founders and University advisors to develop ideas within context of NSF ERC Guidelines. Help define ERC opportunity.	Define and develop ERC concept working closely with ERC Management Team.	Refine ERC concept working closely with ERC Management Team.	Redefine Center concept based around a vision of future sustainability.	Review and define new sustainability strategy
Member Recruitment	with.	Develop active outreach process through business connections, technical summits, outreach presentations, fliers and brochures. Tiered membership structure based on company size, varying benefits. What is a realistic IAB size.	Refine recruitment efforts with a greater emphasis on maximizing ability to retain key members.	Redefine recruitment and retention around a future sustainability strategy.	Develop connections to forge the best path into Sustainability.
Member Retention	Begin to define strategy to retain members through engagement in center activities including newsletters, websites and other informational tools.	Develop company interaction and benefits. Develop ideas around joint projects, testbeds, and other ERC opportunities.		Redefine recruitment and retention around a future sustainability strategy.	Develop retained connections to forge the best path into Sustainability.
Commericiali zation of IP	Begin to define testbeds and cross project integration alongside a strategy for commercialization.	Develop Industry R&D needs alongside ERC needs in testbeds, Integrate industrial input from project inception, using project management tools (timelines, go/no-go points, cross project integration, etc.). Strategies for increasing sponsored research projects with industry.	Meet Industry R&D needs alongside ERC needs in testbeds, Integrate industrial input from project inception, using project management tools (timelines, go/no-go points, cross project integration, etc.). Strategies for increasing sponsored research projects with industry.	Redefine commercialization strategy around a future sustainability strategy.	Redefine commercialization strategy in light of sustainability path.
Intellectual Property	· · · ·	Develop processes for management and strategy, Technology Transfer and the Invention Disclosure. Start to identify key technology transfer staff for ERC IP management (invention disclosures, patent processing, IP marketing, etc.), the licensing process and what is really valuable to the membership.	Technology Transfer and the Invention Disclosure process. Realistic chances of "big-hit" from IP generated revenue. Cultivate connections to key technology transfer staff	Redefine intellectual property strategy around a future sustainability strategy.	Redefine IP strategy in light of sustainability path.
Innovation Strategy		Develop paths to entrepreneurship activities in the ERC and University, connecting to local, state, and regional economic development and incentive programs and role of investment groups such as Angels, VCs.	Cultivate entrepreneurship activities in the ERC and University, connecting to local, state, and regional economic development and incentive programs and role of investment groups such as Angels, VCs.	Redefine innovation strategy around a future sustainability strategy.	Redefine innovation strategy in light of sustainability path.
Education Programs	education programs	Start student mentoring programs, short courses and workshops for industry, Certificate programs and distance learning models, Faculty and student exchange, Active promotion of industrial recruitment of graduates.	Refine student mentoring programs, short courses and workshops for industry, Certificate programs and distance learning models, Faculty and student exchange, Active promotion of industrial recruitment of graduates.	Redefine education strategy around a future sustainability strategy.	Redefine education strategy in light of sustainability path.

CENTER FOR

Strategy: Define and Refine

Goals	Define, Develop, Refine and Optimize
Strategy and Ideation	Define, Develop, Refine and Optimize CBiRC, Work Closely with Leadership Team
Innovation	Cultivate Innovative Culture, Entrepreneurship Course, Translational Research, Startup Companies, Innovation Partners, Angels and VCs
Education	Student Spotlights, Industry Internships, Distance Learning, Exchange, Student Mentoring, Recruitment
Member Recruitment	Industry Outreach, Summits, Conferences, LinkedIn, Connections, Site Visits
Member Retention	Newsletters, Networking, Poster Competition, Student Seminars, Technology Fair, Technology Transfer, Two-Way Confidentiality, Sponsored Research, Internships
Commercialization of IP	Integrate Industry Input, Invention Disclosures, NSF Translation Research Grants, Startup Companies
Intellectual Property	Invention Disclosure Process, Align with Offices of IPTT,

P / O / E / T / S

CENTER FOR POWER OPTIMIZATION OF ELECTRO-THERMAL SYSTEMS

2017 ILO Summit

K. Bender

HOWARD UNIVERSITY | STANFORD UNIVERSITY | UNIVERSITY OF ARKANSAS UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN AN NSF SPONSORED CENTER

Research Need for POETS

AN NSF SPONSORED CENTER

Research Need for POETS

Safety and performance concerns

Research Need for POETS

- Current electrical systems are thermally limited in power density
- Far easier to put thermal energy into a confined volume than it is to take it out
 - Each field approaches the problem from their own perspective and misses the whole
 - Lack of a systems-level
 approach to power management
 - POETS brings the systems approach

AN NSF SPONSORED CENTER

• Vision:

The POETS vision is to be the pre-eminent research and education organization driving the integrated, optimized, concurrent movement of thermal and electrical power in tightly constrained mobile environments.

• We will be able to route thermal power in confined spaces as easily as electrical power

10X to 100X increase in power density over 2014 state of the art

POETS's Research Portfolio

AN NSF SPONSORED CENTER

- <u>Thrust 3</u>What materials can be used?
 - What fabrication techniques are feasible?
 - Component fabrication

Thrust 1

 How to off-line optimize the system for operational effectiveness?

Tight integration of Thrusts is critical

- How to manage power flow on-line?
- System
 operation

<u>Thrust 2</u>

- Off-line multi-physics design with constraints
- Integration of thermal and electrical module requirements
- Subsystem integration

POETS Testbeds

- Right problem
 - Complex, multi-disciplinary, systems-level problem is appropriate for an ERC
- Right time
 - Clear need driven by global trends that will not reverse

- Right team
 - Right blend of expertise
 - Right team of institutions and industries

AN NSF

SPONSORED

Help address the Terawatt Challenge

Richard Smalley – 1996 Nobel Prize Winner

"Find enough clean energy to raise the living standards of people around the globe"

1.5 Billion people in the dark (21%)

Astronomy Picture of the Day 2000 November 27 http://antwrp.gsfc.nasa.gov/apod/astropix.html

Earth at Night More information available at: http://antwrp.gsfc.nasa.gov/ap001127.html

Consortium of 8 universities

Consortium of 8 universities and industrial partners

QESST 1.0

Margins

QESST 1.0 Increase efficiency Reduce costs Generate electricity (only)

Focused research in low margin business environment requires government funding

research

education

alliances

infrastructure

QESST Strengths – Leveraging Alliances

Leading team of researchers in photovoltaics

Unmatched facilities for hands-on training

Leading educators in photovoltaics

Worldwide network

PLUS ALLIANCE

ARIZONA STATE KING'S COLLEGE UNSW UNIVERSITY LONDON AUSTRALIA Phoenix London Sydney

THE UNIVERSITY of NEW MEXICO

Georgialnstitute of Technology

THE UNIVERSITY OF ARIZONA.

HOUSTON

NNCI Southwest

QESST Strengths – Infrastructure

The University of Arizona College of Optical Sciences

Delaware

Caltech

NNCI Southwest

Source: BEA.gov; GDP deflator/Dick Startz

QESST 2.0 Example - Education

Over million visits per year English, Korean, Spanish

2020

Differentiation

AT**Kearney**

By 2020 IoT will impact close to 6% of the global economy

IoT will be materially disruptive – there will be winners and losers

Source: A.T. Kearney

By 2020 212 billion IoT devices > 25 per person All needing power

source: IDC

Who cares?

Who cares? Advertisers

Personalized advertising

Background

1984 Value proposition: Unwired No: data, text, camera, GPS, apps Forecast: 300,000 devices

Background

1984 Value proposition: Unwired No: data, text, camera, GPS, apps

Forecast: 300,000 devices

2017 7,000,000,000

212 billion devices in need of power Wireless wins Energy harvesting wins

QESST 2.0 Example- PVoT

Custom form factors Sensor networks Building integrated 2020 Vilitary applications

Differentiation

QESST 2.0 Example- DoD

Net zero by 2020 DoD pays \$400 per gallon of gasoline

2020

Differentiation

Margins

Next Generation Modules

High Margin Market: Light weight, Aesthetics \rightarrow BIPV

Frameless

SolarWorld Canadian Solar Trina

Clear Panels

Prism Solar DSM Advanced Surfaces Topray Solar Sunshine Solar

Solar City

Tiles

Solar Skin

Sistine Solar

d Solar

QESST 2.0 Solution

Differentiation

Thank You

ow does nature do it?

Center for Bio-mediated & Bio-inspired Geotechnics

The Role of the IAB

Nasser Hamdan

Role of the IAB

Primarily concerned with providing direction for Center research and education programs.

Provide perspective into the critical needs of industry and practitioners.

Provide input on-

- Research priorities
- Technology demonstrations
- Technology-to-market business planning.

BBG Center for Bio-mediated & Bio-inspired Geotechnics

Role of the IAB

Responsibilities include:

Annual and midyear review of current projects (tech., pract.)

Guidance regarding these projects (crit. needs?)

Informs our internal reviews

Review & input on new, annual projects

which ones should be awarded?

Annual SWOT

CBBG Center for Bio-mediated & Bio-inspired Geotechnics

Role of the IAB . . . Getting into the weeds

Role of the IAB is fairly clear, but not so simple in practice.

To understand this, check the composition of the IAB (17 Industry **Partners)** and highly diverse nature of the Center:

- Geotech and contractors \rightarrow ground improvement
- Geoenvironmental \rightarrow soil and water remediation
- Consultants \rightarrow ground improvement, remediation, exotic/complex projects
- Owners/operators → landfill, mining, oil & gas, slag/metals, utilities
- Agencies → State DOT, State Environmental

CBBG Center for Bio-mediated & Bio-inspired Geotechnics

Center for Bio-mediated &

Bio-inspired Geotechnics

Industry partners have very different types/ranges of expertise Industry-specific concerns favor certain research areas/projects Diverse nature of CBBG covers wide range of projects and research

25 projects covering 6 research areas!

- 1. Lifecycle analysis
- 2. Bio-cementation/solidification
- 3. Fluid flow/Transport
- 4. Microbial processes
- 5. Environmental/Landfills
- 6. Infrastructure

- Enzyme induced carbonate precipitation
- Liquefaction mitigation via microbial denitr.
- Electro-kinetics
- Annelid Inspired Geo-probe
- Microbial processes in extreme env.
- Tree/plant root inspired foundations

Breadth of technical content is outside capabilities of any single

Center for Bio-mediated &

Bio-inspired Geotechnics

Role of the IAB . . . A practical approach

Only 4 projects per industry partner \rightarrow they choose projects

- Typically follow their "favorites" anyway
- Provide deeper technical and value input

"Orphan" and low-count projects are politely "assigned"

- Relevant expertise is a limiting factor
- Encouraged to comment on potential value to (other?) industry(s)

Role of the IAB . . . A practical approach

Projects closest to field testing/application receive value input

- Not necessarily same as the "technical" favorites
- Input typically involves costs and lifecycle considerations

 \rightarrow follow-ups!

A great tool to solicit direct industry support!

Ultimately, you must know your industry partners . . .

strengths, interests and capabilities (time, staff, etc.)

Role of the IAB . . . the Annual SWOT

A similar logic applies to gather details for SWOT

But, SWOT requires holistic approach

- Individual, sub-group technical interests become secondary
- Intra-industry competition and secrecy is not a concern
- Cross-industry perspective in the context of the Center mission
 - \rightarrow <u>Develop innovative technologies</u> to serve civil engineering industry
 - \rightarrow Educate & train future engineers in the field of Biogeotechnics

This is where IAB group work happens over partner interests

Role of the IAB . . . Education

This is where IAB group work is seen again

Open, positive discussions about multidisciplinary education program and student activities

Plenty willing to speak with students

Individually, sub-groups/specialty areas and via webinar

General perception that students are well-prepared and ready to hire

Several hires and internships by industry partners

Thank You Questions?

CBBG Center for Bio-mediated & Bio-inspired Geotechnics