

Sustainability Planning For Post Graduation

Presented by: Lisa Beard Industry Outreach Director And Liaison Officer

July 27, 2017

Northeastern

Rensselaer TUSKEGEE

Sustainability Overview CURENT Post-Graduation Planning

Purpose

•Transition strategy for CURENT to move from a NSF/DOE jointly funded ERC to a self-sufficient organization

•Secure additional support/funding for continuation beyond year 2020

•Four-year business plan/roadmap to outline necessary steps for implementation

•Engage stakeholders in planning process

What is needed to transition to self-sustained institute

•Leadership of the management team

•Broad engagement of faculty, staff, industry partners, and university administration, which allows for both ownership in the plan and commitment from all stakeholders

•High degree of University commitment

•High education program value to faculty, students and industry

•Commitment of core group of faculty

•Active industrial support, contribution of membership fees and guidance

•Effective implementation of a transition plan that builds on Center's strengths

Sustainability Planning Process

- Initiated discussions with potential partners and funding sources
 - Reviewed other successfully graduated center's sustainability plans
 - Conducted one-on-one meetings with principal and key members
 - Ask for input during IAB workshops and retreats
 - Held Internal discussions with Leadership across Universities to gain institutional support
 - Developed action plan to procure resources including State Funding, Endowments e.g. NYSERDA, UT Center of Excellence, Gov. Chair e.g. Gates Foundation
- Formed the CURENT Industry Sustainability Working Group (CISP)
- Met with NSF ILO Consultants at UTK in April 2017 to discuss Center Sustainability Planning and Tech Transfer
- Presented and discussed CISP progress with IAB/SAB during July 2017 summer retreat
- Establish cooperative efforts with multi-disciplinary partners at CURENT Universities
- Working with two, small, start-up companies for technology transfer (option to license)
- Launch Core projects during Years 9 and 10
- Seek support to continue beyond Year 10
- Develop Plan for Education and Outreach Continuation

CURENT Industry Sustainability Planning Group (CISP)

Team Purpose

- determine methods to retain and grow relationships with current members and explore other opportunities to help sustain the center.
- help center build a sustainable model by providing guidance for financial support and facilitation of its programs.

Mission and Objectives

- increase the likelihood of a successful transition so Center is able to sustain itself (both its mission and budget) and continue to operate after graduation.
- anticipated that several key changes can be expected for the Center. The goals of the plan is to positively manage those major changes and develop creative approaches to augment the core programs of the Center in other ways.

CURENT Sustainability team

CURENT Sustainability Team			
Name	Affiliation		
Industry			
Tom King (chair)	UT/ORNL		
Hongming Zhang	Peak Reliability		
Dejim Lowe	Tennessee Valley Authority		
Xiaoming Feng	ABB/IAB Co-chair		
Dave Bertagnolli	Scientific Advisory Board		
Matthew Gardner	Dominion/IAB Chair		
Phil Overholt	Department of Energy		
Faculty			
Ali Abur	NEU Campus Director		
Joe Chow	RPI Campus Director		
Fran Li	UTK Campus Director		
Greg Murphy	TU Campus Director		
Bill Dunne	College of Engineering,		
	Associate Dean & Professor		
Staff			
Lisa Beard	Industry Outreach Director		

Sustainability Plan Four Key Components

1. Programmatic

Define Post-Graduation Mission & Goals

2. Financial

- Secure University Support
 - Institutional Support (financial)- written commitments from 4 Deans
 - Interdisciplinary research grants obtained from Federal and State agencies
 - Innovation Partnerships education grants and start-up companies
- Continue to Increase Industry Engagement
 - 14 on-site visits to industry sites in 2016 and 8 in YTD in 2017
 - $_{\circ}$ 35 members 5/30/2017 goal is 40 or less
 - Consider modifying cost structure
- Capitalize on Technology transfer

3. Cultural

- Develop future workforce by educating students who are prepared to work as teams, to become entrepreneurs, and are cross-trained in power electronics and power systems;
- Build a cross-section with public-private partnerships and leverage both public and private funding;
- Seek technology innovation through research, development and application;

4. External

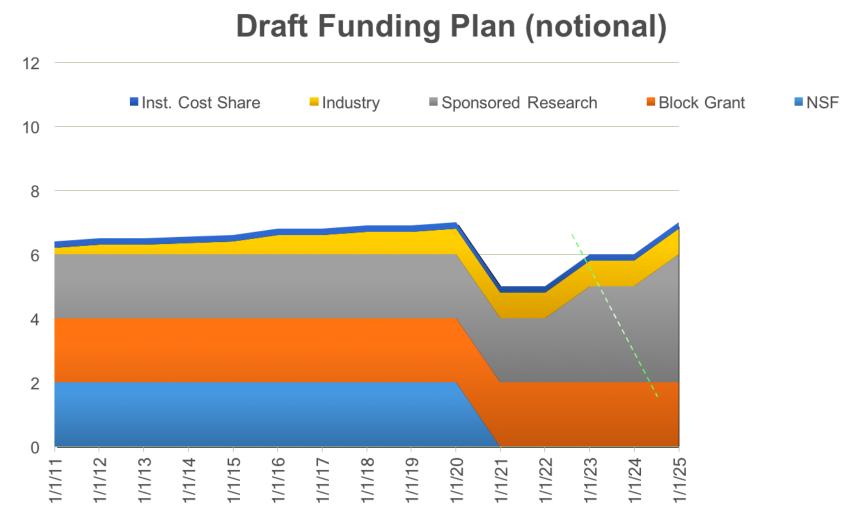
- Marketing/Action plan
- Conduct Outreach/Workshops

- CURENT's mission is to be a critical catalyst for the technical evolution of the power industry. Several key changes expected for the Center:
- Goal of the sustainability plan is to positively manage those major changes and develop creative approaches to augment the core programs of the Center in other ways. The plan will address the following areas: 1) financial, 2) programmatic, 3) cultural and 4) external.
- Metrics of success include the ability to maintain the core Center characteristics of system driven approaches and the core elements of industry engagement, research and education.

Key Challenge will be balancing scope and availability of resources

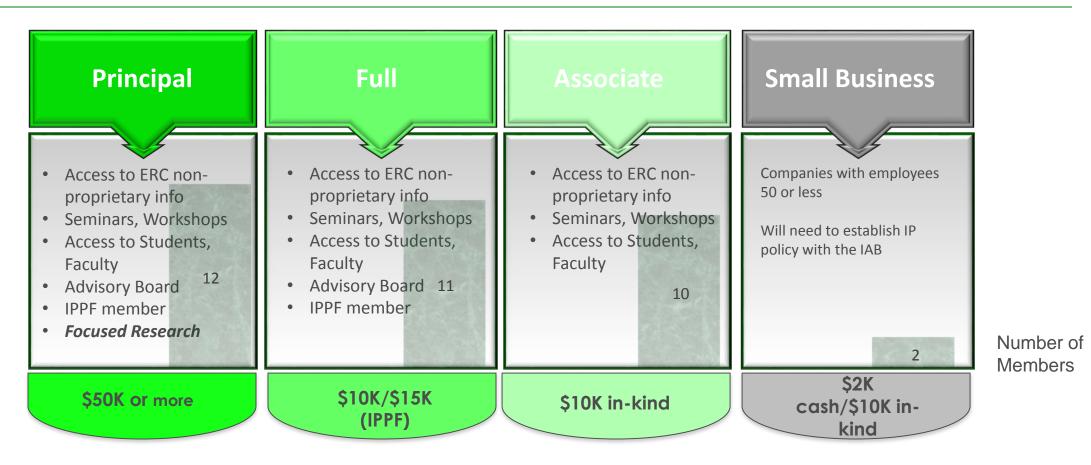
Activities Across Different Time Dimensions

Innovation (Long-Term, 10-20 yr)


- Identify and research top technology trends (ten to twenty year timeframe) with emphasis on enabling scalable, power-industry positive impacts
- Develop and publish a series of high-priority technology white papers for Members
- Develop attractive proposals and experiments in an effort to support long-term industry innovation and assure future investment
- Build a strategic technology portfolio (patents, licenses, etc.) to provide incremental independent funding while also providing value to Members

Research and Development (Mid-Term 3-5yr)

- Grow core competence in technology areas such as Ultra-Wide-Area Management, Monitoring and Measurement, Cyber Security, Large Scale Modeling, Analytics and Visualization
- Working closely with top tier Members Power
- Technology Transfer (Short Term 12-24 months)
 - Technology Testing/User Group(s)
 - Software tool development and prototype design
 - Annual Industry Conference
 - Communications



Post-Graduation Business Plan

Membership Structure

Our Sustainability Plan will focus on Principal and Full Memberships

- Increase principal/full membership participation
- May consider modifying membership fees
- May consider developing focused membership groups/projects

Sustainability Plan

Innovative Stakeholder Partnership – States, Federal opportunities

Cherokee Farms Innovation Campus, adjacent to UT campus, is being considered as a location for a multi-institutional collaborative that could leverage CURENT research activities

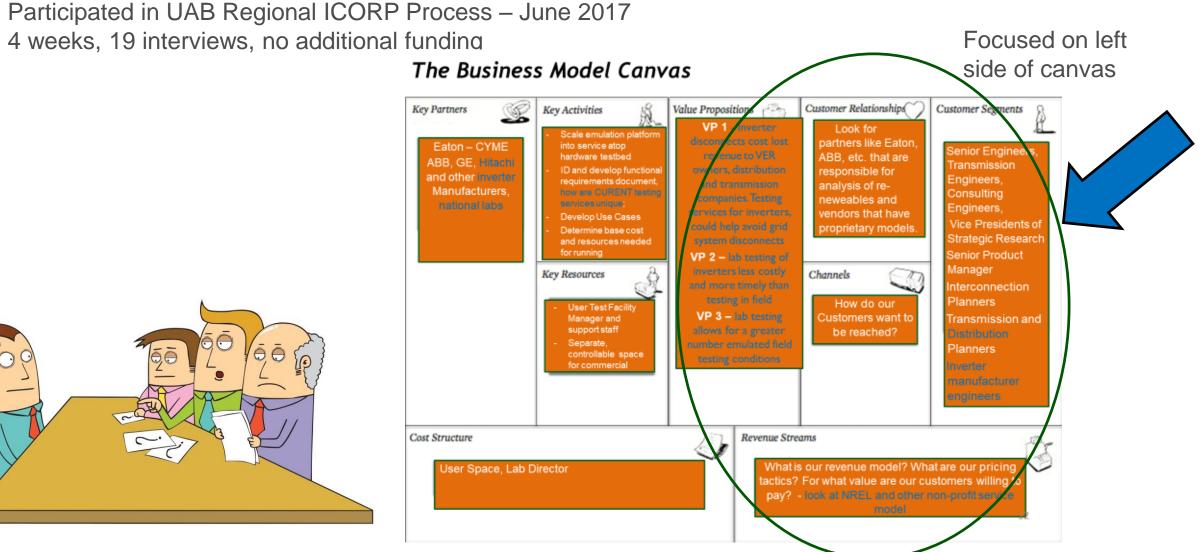
- Continue to pursue State and Federal funding opportunities
 - NYSERDA
 - Massachusetts
 - o Alabama
 - \circ Tennessee
- Innovative Stakeholder Partnership: e.g. Cherokee Farm Innovation Campus is a collaborative effort of The University of Tennessee and Oak Ridge National Laboratory.
- Aggressively pursue opportunities with DOD, DHS, DOE

Capitalize on Technology Transfer & Intellectual Properties


Commercialization paths

Continue strong partnerships and collaboration with industry
Increased financial assistance from each of the partner Universities and industry,

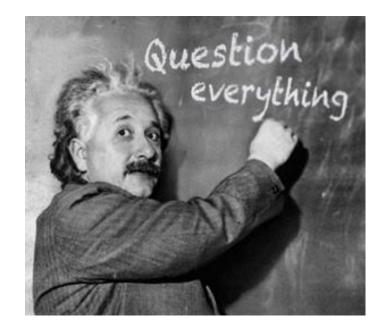
•Transfer of technologies to industry, business and marketing plans being implemented utilizing research expertise of the center's faculty, testbeds and research facilities.


Technology commercialization roadmap

Commercialization paths

FEATURES	EXAMPLES	COMMERCIALIZATION PATHWAYS	TECHNOLOGY APPROACH
Component & Devices	 Next Generation Monitoring Actuation Systems Power Electronics 	 Generate Intellectual Property & Collaborate with Innovation Partners Member Co. License Small Business License Start-up Company 	 Device development Modeling system impacts Hardware test-bed demo Field trial Full deployment
Software	 Control Algorithms MOVARTI –Volt/Var Situational Awareness 		 Algorithm development Modeling system impacts Incorporate into commercial product or open-source Field trial and full deployment
User Facility	Hardware Test-bed	ERC ConsultingStart-up company	 Define problem with client Develop scenarios for HTB Results communicated to client

I-CORP Program – Develop Business Model Canvas



Action Plan

- CURENT Industry Sustainability Plan Working Group/Plan
- Continue CURENT Research Outside of NSF/DOE ERC
- Extend CURENT Roadmap for Post Graduation
- Develop Business Plan (operating expenses/projected revenue)
- Work with three "technovators" for technology transfer
- Measures of Success
 - Secured financial assistance
 - o Interdisciplinary research grants obtained from Federal and State agencies
 - Adopted technology developed business and marketing plans
 - Re-defined scope of the research portfolio
 - Fee structure established and being used for outside use of testbeds and research facilities transfer models
 - Continue Education Outreach Efforts

Discussion

Acknowledgements

This work was supported primarily by the ERC Program of the National Science Foundation and DOE under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program.

Other US government and industrial sponsors of CURENT research are also gratefully acknowledged.

