Arthropod Management Technologies

The Center for Arthropod Management Technologies (CAMTech) streamlines efforts to develop technologies for effective management of arthropod and nematode pests and disease vectors. CAMTech research is aligned with the needs of industry to expedite delivery of new tools for pest management. Arthropod and nematode pests harm food production and human health and welfare on a massive scale. The pests of primary importance change with time following the accidental introduction of new species, development of resistance in managed pests, changing agricultural and environmental practices, and climate change, which increases the opportunity for some pest species to thrive. CAMTech coordinates the efforts of industry, government, and academia to manage arthropod and nematode pests to meet the need for new tools for pest management. The goals of CAMTech are to: Conduct precompetitive research and transfer knowledge to industrial partners for in-house development. Optimize and extend the versatility of current arthropod and nematode management technologies. Train personnel for potential future employment within industry

Research Areas

Integrated pest management
The integration of multiple pest management methods (known as integrated pest management) is a proven but infrequently adopted strategy for sustainable pest suppression, in part because results can vary depending on many factors. Inconsistent efficacy of a given management strategy may be resolved by further research into the biology of a given pest and modeling for increased understanding of the ecology of the cropping system, resulting in recommendations for improved management. For example, understanding of insect dispersal and reproductive capacity is key to accurate modeling of resistance development and its likely rate of spread from a point of origin.
Methods and tools
Limitations associated with methodology or tools commonly restrict research required for the development or full exploitation of pest control strategies. For example, cell lines for primary pest species are often lacking, with existing cell lines offering limited benefit. In addition, novel tools such as nanoparticles are under investigation for the delivery of bioactives for pest control.
Physiology
Increased understanding of a variety of physiological processes could provide the foundation for novel approaches to insect pest control (e.g., the movement of proteins across the insect gut into the hemocoel), or define key physiological challenges associated with control of a given pest (e.g., the digestive enzymes of stink bugs). In many organisms, including arthropods, introduction of double-stranded RNA (dsRNA) results in specific inactivation of an endogenous gene with sequence identity to the introduced dsRNA, a process known as RNA interference (RNAi). RNAi provides for the development of target-specific management methods for insect pests. Application of dsRNA knocks down genes in some arthropod species, and the practical application of this approach for arthropod control has been demonstrated. However, research is needed to delineate factors that limit the application of RNAi to certain arthropods, to fully exploit the potential of this new approach.
Resistance
The use of classical chemical insecticides was a major contributing factor to the increase in agricultural productivity in the 20th century, and insecticide application is still the primary management practice for most arthropod pests. However, repeated application of chemicals almost invariably results in development of resistance in the targeted pest, with insecticide resistance already documented in more than 500 species of insects and mites. As a result, a wide variety of chemicals effectively employed in the past are no longer useful against many pest species. The repeated use of any pest management tool, including transgenic plants expressing insect-specific toxins derived from Bacillus thuringiensis, entails a very high risk of bringing about resistance. There is a pressing need to find new approaches to manage pests that are resistant to current management approaches.

Facilities & Resources

Partner Organizations

Abbreviation

CAMTech

Country

United States

Region

Americas

Primary Language

English

Evidence of Intl Collaboration?

Industry engagement required?

Associated Funding Agencies

Contact Name

Bryony C. Bonning

Contact Title

Center Director

Contact E-Mail

bbonning@ufl.edu

Website

General E-mail

Phone

Address

The Center for Arthropod Management Technologies (CAMTech) streamlines efforts to develop technologies for effective management of arthropod and nematode pests and disease vectors. CAMTech research is aligned with the needs of industry to expedite delivery of new tools for pest management. Arthropod and nematode pests harm food production and human health and welfare on a massive scale. The pests of primary importance change with time following the accidental introduction of new species, development of resistance in managed pests, changing agricultural and environmental practices, and climate change, which increases the opportunity for some pest species to thrive. CAMTech coordinates the efforts of industry, government, and academia to manage arthropod and nematode pests to meet the need for new tools for pest management. The goals of CAMTech are to: Conduct precompetitive research and transfer knowledge to industrial partners for in-house development. Optimize and extend the versatility of current arthropod and nematode management technologies. Train personnel for potential future employment within industry

Abbreviation

CAMTech

Country

United States

Region

Americas

Primary Language

English

Evidence of Intl Collaboration?

Industry engagement required?

Associated Funding Agencies

Contact Name

Bryony C. Bonning

Contact Title

Center Director

Contact E-Mail

bbonning@ufl.edu

Website

General E-mail

Phone

Address

Research Areas

Integrated pest management
The integration of multiple pest management methods (known as integrated pest management) is a proven but infrequently adopted strategy for sustainable pest suppression, in part because results can vary depending on many factors. Inconsistent efficacy of a given management strategy may be resolved by further research into the biology of a given pest and modeling for increased understanding of the ecology of the cropping system, resulting in recommendations for improved management. For example, understanding of insect dispersal and reproductive capacity is key to accurate modeling of resistance development and its likely rate of spread from a point of origin.
Methods and tools
Limitations associated with methodology or tools commonly restrict research required for the development or full exploitation of pest control strategies. For example, cell lines for primary pest species are often lacking, with existing cell lines offering limited benefit. In addition, novel tools such as nanoparticles are under investigation for the delivery of bioactives for pest control.
Physiology
Increased understanding of a variety of physiological processes could provide the foundation for novel approaches to insect pest control (e.g., the movement of proteins across the insect gut into the hemocoel), or define key physiological challenges associated with control of a given pest (e.g., the digestive enzymes of stink bugs). In many organisms, including arthropods, introduction of double-stranded RNA (dsRNA) results in specific inactivation of an endogenous gene with sequence identity to the introduced dsRNA, a process known as RNA interference (RNAi). RNAi provides for the development of target-specific management methods for insect pests. Application of dsRNA knocks down genes in some arthropod species, and the practical application of this approach for arthropod control has been demonstrated. However, research is needed to delineate factors that limit the application of RNAi to certain arthropods, to fully exploit the potential of this new approach.
Resistance
The use of classical chemical insecticides was a major contributing factor to the increase in agricultural productivity in the 20th century, and insecticide application is still the primary management practice for most arthropod pests. However, repeated application of chemicals almost invariably results in development of resistance in the targeted pest, with insecticide resistance already documented in more than 500 species of insects and mites. As a result, a wide variety of chemicals effectively employed in the past are no longer useful against many pest species. The repeated use of any pest management tool, including transgenic plants expressing insect-specific toxins derived from Bacillus thuringiensis, entails a very high risk of bringing about resistance. There is a pressing need to find new approaches to manage pests that are resistant to current management approaches.

Facilities & Resources

Partner Organizations